
How Zimperium
Helps You Meet
OWASP MASVS
Resilience
Requirements

1

How Zimperium Helps You Meet MASVS Resilience Requirements

MSTG-RESILIENCE-1

The app detects and responds
to the presence of a rooted or

jailbroken device either by
alerting the user or terminating

the app.

MSTG-RESILIENCE-2

The app prevents debugging
and/or detects and responds

to a debugger being attached.
All available debugging

protocols must be covered.

 MSTG-RESILIENCE-3

The app detects and responds
to tampering with executable
files and critical data within its

own sandbox.

MSTG-RESILIENCE-4

The app detects and responds
to the presence of widely used
reverse engineering tools and

frameworks on the device.

MSTG-RESILIENCE-5

The app detects and responds
to being run in an emulator.

 MSTG-RESILIENCE-6

The app detects and
responds to tampering the

code and data in its own
memory space.

MSTG-RESILIENCE-7

The app implements multiple
mechanisms in each defense

category (8.1 to 8.6).

MSTG-RESILIENCE-8

The detection mechanisms
trigger responses of different
types, including delayed and

stealthy responses.

MSTG-RESILIENCE-9

Obfuscation is applied to
programmatic defenses, which
in turn impede de-obfuscation

via dynamic analysis.

MSTG-RESILIENCE-10

The app implements a 'device
binding' functionality using a

device fingerprint derived from
multiple properties unique to

the device.

MSTG-RESILIENCE-11

All executable files and libraries
belonging to the app are either

encrypted on the file level
and/or important code and data

segments inside the
executables are encrypted or

packed.

MSTG-RESILIENCE-12

Obfuscation scheme is both
appropriate for the particular

task and robust against manual
and automated de-obfuscation

methods.

MSTG-RESILIENCE-13

What are MASVS Resilience
Requirements?
OWASP MASVS Resilience requirements are defense-in-depth measures recommended for apps that process or give access to
sensitive data or functionality. They increase the app's resilience against reverse engineering, unauthorized tampering, and specific
client-side attacks.

Next to having solid hardening
of the communicating parties,

application-level payload
encryption can be applied to

further impede eavesdropping.

• zScan: Discover and fix compliance, privacy, and security issues within the development process before you publicly release
your apps.

• zKeyBox: Protect confidential data by securing cryptographic keys with white-box cryptography so they cannot be discovered,
extracted, or manipulated.

• zShield: Harden and protect the app with advanced obfuscation and anti-tampering functionality to protect the source code,
intellectual property (IP), and data within the application.

• zDefend: Enable the mobile application to detect and proactively protect itself by taking actions on the end user’s device, even
without network connectivity.

2

How Zimperium Helps You Meet MASVS Resilience Requirements

Zimperium’s Mobile Application Protection Suite consists of four products with a centralized dashboard to view threats and create
response policies. It is the only unified platform that combines centralized visibility with comprehensive in-app protection, combining
both inside-out and outside-in security approaches to help enterprises build and maintain secure mobile apps.

What is Zimperium
Mobile App Protection

Suite (MAPS)?

https://www.zimperium.com/white-box-cryptography/
https://www.zimperium.com/zscan/
https://www.zimperium.com/zkeybox/
https://www.zimperium.com/obfuscation/
https://www.zimperium.com/zshield/
https://www.zimperium.com/zdefend/
https://www.zimperium.com/mobile-app-protection/

3

How Zimperium Helps You Meet MASVS Resilience Requirements

ID MASVS-R ID

8.1 MSTG-RESILIENCE-1

8.2 MSTG-RESILIENCE-2

8.3 MSTG-RESILIENCE-3

8.4 MSTG-RESILIENCE-4

8.5 MSTG-RESILIENCE-5

8.6 MSTG-RESILIENCE-6

8.7 MSTG-RESILIENCE-7

8.8 MSTG-RESILIENCE-8

8.9 MSTG-RESILIENCE-9

8.10 MSTG-RESILIENCE-10

8.11 MSTG-RESILIENCE-11

8.12 MSTG-RESILIENCE-12

8.13 MSTG-RESILIENCE-13

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

How Does MAPS Help
You Meet the Resilience
Requirements?
The following table helps you better understand how Zimperium MAPS capabilities map to OWASP MASVS Resilience
(MASVS-R) requirements and, in turn, aids you in achieving MASVS compliance.

MAPS Coverage Overview

4

How Zimperium Helps You Meet OWASP MASVS Resilience Requirements

Detailed Summary

8.1 MSTG-RESILIENCE-1 The app detects and responds to the presence of a rooted or jailbroken device either by
alerting the user or terminating the app.

zScan scans the app binary and identifies if jailbreak or root detection logic is present or missing.

zShield injects advanced detections and protections for rooted and jailbroken devices into mobile applications.

zDefend provides advanced behavioral machine learning (ML)-based protection, and updates can be made OTA without republishing the app.

The threats below, when detected, are reported to the centralized dashboard for alerting and analysis.

• Device Rooted/Jailbroken
• SE Linux Disabled
• System Tampering
• File System Modification

8.2 MSTG-RESILIENCE-2 The app prevents debugging and/or detects and responds to a debugger being attached. All
available debugging protocols must be covered.

zScan reinforces coding best practices where:
• Debugger Check Enabled
• WebView Not Debuggable
• Debug App Disabled

zShield injects detections to identify when the debugger is attached to the application.

zDefend provides advanced behavioral ML-based detection, and updates can be made OTA without republishing the app.

The threats below, when detected, are reported to the centralized dashboard for alerting and analysis.
• App Debug Enabled
• USB Debugging Enabled
• Android Debug Bridge Apps Not Verified
• Device Attack / OS Tampering

8.3 MSTG-RESILIENCE-3 The app detects and responds to tampering with executable files and critical data within its
own sandbox.

Insight: In order for attackers to tamper with files and critical data in its own sandbox, the device must be in the compromised
state as per Android/iOS security design. zDefend SDK and zShield detects OS-level compromises, such as alerting the app to
take response action.

zShield provides:
• Code and data integrity checks by inserting overlapping checkers
• App integrity verification against signatures/enterprise certificate of the binary to protect against re-package and re-signing attack

zDefend provides advanced behavioral ML-based detection of runtime tampering and injection of instrumentation frameworks.

The threats below, when detected, are reported to the centralized dashboard for alerting and analysis.
• App Tampering
• System Tampering
• Filesystem Changed
• SE Linux Disabled
• Elevation of Privileges

5

How Zimperium Helps You Meet OWASP MASVS Resilience Requirements

8.4 MSTG-RESILIENCE-4 The app detects and responds to the presence of widely used reverse engineering tools and
frameworks on the device.

zScan scans the app binary and identifies if best practices for preventing reverse engineering are present or missing
• Static Data Exposure
• Readable Method Names
• No Code Obfuscation / Code Obfuscation Detected
• Automatic Reference Counting (ARC) Disabled

zShield
• Provides real-time visibility into app tampering.
• Provides code obfuscation/encryption techniques that make it difficult for static reverse engineering tools, such as Xposed and Frida.
• Injects rule-based detection for reversing engineering tools and framework.

zDefend detects the presence of reverse engineering or hooking tools by leveraging advanced behavioral ML-based runtime detection.
Updates to keep up with new tools and techniques can be made OTA without needing to republish the app.

8.5 MSTG-RESILIENCE-5 The app detects and responds to being run in an emulator.

zScan scans the app binary and identifies if emulator detection logic is present or missing.

zDefend detects popular emulators / device tampering, such as custom roms, by leveraging advanced behavioral ML-based runtime
detection. Updates to keep up with new tools and techniques can be made OTA without needing to republish the application.

The threats below, when detected, are reported to the centralized dashboard for alerting and analysis.
• App Running on Emulator
• Android Device - Possible Tampering
• Android Device - Custom Rom

8.6 MSTG-RESILIENCE-6 The app detects and responds to tampering the code and data in its own memory space.

Insight: For attackers to tamper with the code in the app’s own memory space, the device OS needs to be in a compromised state.

zDefend SDK detects various indicators using our multi-layer machine learning detection engine. For more detail, see responses for 8.1,
8.3, and 8.4.

8.7 MSTG-RESILIENCE-7 The app implements multiple mechanisms in each defense category (8.1 to 8.6). Note that
resiliency scales with the amount, and diversity of the originality of the mechanisms used.

See response to 8.1 - 8.6.

zShield is recommended for MASVS - L1 + Resilience compliance.
A combination of zShield and zDefend is recommended for MASVS L2 + Resilience compliance.

6

How Zimperium Helps You Meet OWASP MASVS Resilience Requirements

8.8 MSTG-RESILIENCE-8 The detection mechanisms trigger responses of different types, including delayed and stealthy
responses.

zDefend provides the ability to detect and trigger an on-device response action to prevent the threat. The application developer builds
the response action once the app owner and security team determine the response.

For example, when a device compromise is detected, the app can choose to alert the user and terminate the app.

The Zimperium team will also conduct a security workshop with the security and development team to offer best practices.

8.9 MSTG-RESILIENCE-9 Obfuscation is applied to programmatic defenses, which in turn impede de-obfuscation via
dynamic analysis.

zShield obfuscates the code during compile time. Here are key capabilities covered by the zShield solution. The bullet points below
summarize the essential source code protection features from Zimperium.

• Android Obfuscation can be applied to both source (Java/Kotlin/Native) and binary level (apk, aab, aar)
• iOS Obfuscation can be applied to source code (Objective C, Swift, Native)

Android
• Code Obfuscation
• Integrity Protection
• Inlining of Static Functions
• String Literal Obfuscation
• Google Play Licensing Protection
• Integrity Protection of Android APK Packages
• Binary Packing
• Cross Checking of Shared Libraries
• Resource Encryption

iOS
• Code Obfuscation
• Integrity Protection
• Inlining of Static Functions
• String Literal Obfuscation
• Mach-O Signature Verification
• Objective-C Message Call Obfuscation
• Objective-C and Swift Metadata Encryption

• Clear app cache
• Logging the user out
• Invalidating the session
• Deleting any app security keys
• Marking the transaction & flipping a fraud

alert flag
• Aborting any active transactions
• Alerting the user (if applicable)
• Making app read-only (e.g. search for an

ATM allowed, but no cash transfer)
• Triggering another authentication in a multi-

factor
• Authentication chain
• Reducing transfer limits

Establish VPN to create Secure
tunnel

Freeze access until user resets
password online

Raise user's fraud score to
account for additional risk

Display dialog box, ask user to
complete transaction offline

MITM

Malware

Jailbroken

Compromised

In-App Remediation Actions

7

How Zimperium Helps You Meet OWASP MASVS Resilience Requirements

8.10 MSTG-RESILIENCE-10 The app implements a 'device binding' functionality using a device fingerprint derived from
multiple properties unique to the device.

Insight: Due to the recent OS changes on both iOS and Android, unique device ID is not exposed due to privacy concerns.

zDefend, when initialized, generates a UUID - unique device identifier. This is unique per application bundle install or reinstall. Zimperium
SDK offers tracking IDs API, which allows applications to initialize and pass to the SDK a correlation ID that can tie the events reported on
devices with user/transaction context.

The tracking IDs are made available on the management console so they can be used to bind multiple devices and filter events in the
backend.

8.11 MSTG-RESILIENCE-11
All executable files and libraries belonging to the app are either encrypted on the file level
and/or important code and data segments inside the executables are encrypted or packed.
Trivial static analysis does not reveal important code or data.

zShield provides encryption, obfuscation, and packing techniques of the application files, resources, and libraries. See 8.9 for more
details.

8.12 MSTG-RESILIENCE-12

If the goal of obfuscation is to protect sensitive computations, an obfuscation scheme should
be both appropriate for the particular task and robust against manual and automated de-
obfuscation methods, considering currently published research. In addition, the effectiveness
of the obfuscation scheme must be verified through manual testing. Note that hardware-based
isolation features are preferred over obfuscation whenever possible.

zShield provides strong code obfuscation and protects the integrity of apps and data, forcing the attacker to move to dynamic analysis.

zDefend SDK enables mobile apps to immediately detect when a user’s device is compromised, when any network attacks are
occurring, and even if malicious apps have been installed. Application development vendors can configure appropriate programmatic
remedial actions when a threat is detected.

Static Attack (Offline) Dynamic Attack (Online)

Hackers download and transform the
code into human readable format

Hacker "owns" the device and
gathers app's behavior

• Code Logic / IP
• API Keys / Endpoints
• Remove / Inject Malicious Code
• Repackage the App

• Root / Jailbreak / Compromise
• Network / MITM
• Privilege Escalation
• Hooking / Debugging
• Code Injection

Tracking ID 1 6335797caa09f40016293cc2

Tracking ID 2 3B74E87A7F

Attackers can tackle reverse engineering and attack the application using online or offline techniques and tools. Zimperium zDefend
and zShield cover both static and dynamic aspects of mobile in-app protection.

8

How Zimperium Helps You Meet OWASP MASVS Resilience Requirements

8.13 MSTG-RESILIENCE-13 Next to having solid hardening of the communicating parties, application-level payload
encryption can be applied to further impede eavesdropping.

zDefend covers both runtime detection of SSL / MITM attacks. Regardless of if the app has implemented certificate pinning, the
attacker can always extract certificates from the app binary and perform an SSL bypass attack on the mobile device. zDefend protects
the SSL pinning and detects network configuration and MITM SSL certificate threats on the device.

Note: The network detections below require location and network access permission on iOS/Android.

zKeyBox offers secure communication and storage of the payload. The solution leverages white-box cryptography to ensure that the
cryptographic keys used to protect sensitive data are not exposed on a mobile device at rest, in memory, and in transit. zKeyBox
supports a large set of cipher/algorithms and APIs to provide an in-depth defense approach to data security on mobile devices.

• Native API
• Java API
• JavaScript API
• TLS API (OpenSSL v3 Provider)
• Secure Database API (SQLite)
• DUKPT (Derived Unique Key Per Transaction) API
• Secure PIN Entry

Threats reported to centralized dashboard:
• MITM
• MITM Fake SSL Certificates
• MITM ARP
• Rogue Access Point

Conclusion
Zimperium’s Mobile Application Protection Suite (MAPS) helps you meet these OWASP MASVS Resilience requirements. It is the
only unified platform that combines centralized visibility with comprehensive in-app protection, combining both inside-out and
outside-in security approaches to help enterprises build and maintain secure mobile apps. To learn more about how Zimperium can
help your organization deliver secure mobile apps, contact us.

https://www.zimperium.com/mobile-app-protection/
https://www.zimperium.com/contact-us/

9

How Zimperium Helps You Meet OWASP MASVS Resilience Requirements

Abnormal Process Activity
Device Tampering
App Tampering / Hooking
Malicious Processes
File System Changed
System Tampering

Internal Network Access
MITM
MITM - ARP
MITM - Fake SSSL Certificate
MITM - ICMP Redirect
MITM - SSL Strip
Rogue Access Point
SSL Downgrades
TCP Scans
Unsecured WiFi

No Encryption
No Device Pin
Malicious Processes SELinux
Disabled Sideloaded App(s)
Stagefright Vulnerability Third
Party App Store Enabled USB
Debugging Mode Enabled
Device Jailbreaking / Rooting
Debugger Detection Emulator
Detection
Malware

Phishing

White-box
Cryptography

Hooking /
Tampering

Root / Jailbreak

Application Framework

Libraries / Runtime

Mobile Operating Systems

• Signature-Based Detection
• Known Threats Only
• Signature DB Update Required

• Behavioral-Based Detection
• Known and Unknown Threats

Protected App

Injection + SDK

Learn more at: zizimzimperium.com
Contact us at: 844.601.6760 | info@zimperium.com

Zimperium, Inc
4055 Valley View, Dallas, TX 75244

	Blank Page

